34 research outputs found

    Observational Equivalence and Full Abstraction in the Symmetric Interaction Combinators

    Full text link
    The symmetric interaction combinators are an equally expressive variant of Lafont's interaction combinators. They are a graph-rewriting model of deterministic computation. We define two notions of observational equivalence for them, analogous to normal form and head normal form equivalence in the lambda-calculus. Then, we prove a full abstraction result for each of the two equivalences. This is obtained by interpreting nets as certain subsets of the Cantor space, called edifices, which play the same role as Boehm trees in the theory of the lambda-calculus

    Transfinite reductions in orthogonal term rewriting systems

    Get PDF
    Strongly convergent reduction is the fundamental notion of reduction in infinitary orthogonal term rewriting systems (OTRSs). For these we prove the Transfinite Parallel Moves Lemma and the Compressing Lemma. Strongness is necessary as shown by counterexamples. Normal forms, which we allow to be infinite, are unique, in contrast to ω-normal forms. Strongly converging fair reductions result in normal forms. In general OTRSs the infinite Church-Rosser Property fails for strongly converging reductions. However for Böhm reduction (as in Lambda Calculus, subterms without head normal forms may be replaced by ⊥) the infinite Church-Rosser property does hold. The infinite Church-Rosser Property for non-unifiable OTRSs follows. The top-terminating OTRSs of Dershowitz c.s. are examples of non-unifiable OTRSs

    Event structures and orthogonal term graph rewriting

    Get PDF
    corecore